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Inverse structure functions
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While the ordinary structure function in turbulence is concerned with the statistical moments of the velocity
incrementAu measured over a distancethe inverse structure function is related to the distanadere the
turbulent velocity exits the intervalu. We study inverse structure functions of wind-tunnel turbulence which
covers a range of Reynolds numbers R400—1100. We test a recently proposed relation between the scaling
exponents of the ordinary structure functions and those of the inverse structure fupBtidmsux and M. H.
Jensen, Phys. Rev. B9, 16309(2004]. The relatively large range of Reynolds numbers in our experiment
also enables us to address the scaling with Reynolds number that is expected to highlight the intermediate
dissipative range. While we firmly establish tfrelative) scaling of inverse structure functions, our experi-
mental results fail both predictions. Therefore, the question of the significance of inverse structure functions
remains open.
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I. INTRODUCTION plained in [3] by arguing that the moments of the exit
The discovery that urbuent velocy signls possess 5SS POV e SRRotes 1 e rbuen o wiere
highly nontrivial scaling structure has been an importantt Y 9 P
stimulus to turbulence research. In the well-known Kolmog-

orov framework, turbulence is viewed as strictly self-similar

ive range. As inverse structure functions encompass the
crossover of the inertial range to the dissipative range, no
algebraic behavior is expected. Instead, as will be explained

with a single scaling exponent which is reflected in kn&® . .
behavior of the energy spectruitk) [2]. It has now become below, the inverse structure functions are expected to scale
gy sp : with Reynolds number in a special manner. Such scaling was

clear that t_he statistical properties of_ tL_eruIent fluctuatlonsindeed observed if8]. As [3] had only experimental data at
are much richer. More precisely, statistical moments of the

velocity incrementsAu(r) =u(x+) - u(x) measured over a a single Reynolds number, lower-Reynolds-number data
distancer exhibit algebraic behavioff Au(r)J)~ré® with were mimicked by filtering the signal at decreasing low-pass

. , . X frequencies. Because this is not the proper way to alter the
scaling exponents(p) that depend in a nonlinear fashion on Reynolds number, an experimental check of the proposed

the momentp [2], and that are most probably universal, i.e., Reynolds number scaling is still needed.
they do not depend on the detailed realization of the turbu- Recently Jensen and Royi#] have proposed an exact

lent flow. _ _ relation between the ordinary and inverse scaling exponents.
Although the scaling properties of thecomponent of the  The relation, which was proved to hold for binomial mea-
velocity difference measured in the satmgdirection offera  gyres. reads

quite restricted view of turbulence, it is an interesting ques- B
tion whether we can turn the scaling argument around. That - 0= {(p) =p. 2

is, how long does it take on average for the velodity exit  Thjs relation was checked if#] for a turbulent signal that

a given velocity intervalu(x) —Au/2,u(x) + Au/2] with size  \yas obtained by integrating the Gledzer-Ohkitani-Yamada

Au? The exit atx+r then defines thexit distance r ~ (GOY) shell model[5]; in this case it was shown to hold
The question then is whether moments of the fluctuatingemarkably well. The problem is that a check of Hg)

exit distances depend algebraically on the size of the ve- necessitates the computation of negative moments of either

locity interval the exit distances for the inverse structure functions or the
(rP) ~ Auf®, (1) velocity increments\u for the normal structure functions.
To make this explicit, we write Eq2) in the form
and, if so, what the relation is between the exponé(ys of o
the inverse structure function and the expon€iify of the —{=p=6(p). )
ordinary structure function. Clearly, the inverse scaling functioms'(p) for positive mo-

The inverse structure functions were first proposed bymentsp must now be compared to negative moments of the
Jenseri1] who found algebraic behavior of the momet® ordinary structure functions. Jensen and R@dk showed
for a turbulent velocity field that was generated by a shelltthat this could actually be done for turbulence generated by
model. No such algebraic behavior was found3h where the GOY model. The found agreement with E§) is re-
inverse structure functions were computed from an experimarkable because it is well known that for actual turbulence
mental turbulent velocity signal that was obtained at a Reyvelocity increments, be they from experiments or from direct
nolds number Re=2000. This absence of scaling was ex- numerical simulations, negative momentuP) with
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p=<-1 do not exist. This follows from the observation that In algorithm Il we start the quest for exit lengths at all

there is nothing special about the velocity increment 0, anaonsidered values &fu at the same positiornand stop once

the probability density function ofAu is a constant near the velocity signal exits at the givehu. Also here the sta-

Au=0. tistics is improved by randomly picking starting positions
The purpose of the present paper is to check(Bg.but  The difference between both algorithms is that in case | the

not through negative moments of the exit distance¥Ve  exit position x, defines the start of the new intervil,

will demonstrate that, contrary to the velocity increments,—Au/2,u,+Au/2], contrary to case Il where all intervals at a

the probability density function of the exit distances vanishegyiven Au start at random positions.

atr=0, so that negative moments make sense. A second pur- In both cases we collect histograms of exit lengths

pose of this paper is a check of the Reynolds number scaling=1,2, ..., ateachAu. From these histograms we form the

of inverse structure functions that was proposefidh The  probability density functionsP,,(r) from which the mo-

key idea is that inverse structure functions probe the dissipanents are computed,

tive large wave number end of the energy cascade. Unlike . .

the ordinary structure functions, which can be scaled with _

the Kolmogorov length and velocity, the scaling of the in- (rp>—Jo erA“(r)dr/fo Pau(r)dr. )

verse structure functions should now involve the Reynolds
number explicitly. Although it may be contended that algorithm | is biased to-

ward the short exit lengths, both algorithms give, up to a
prefactor of(rP), the same results; that is, the scaling prop-
erties of rP computed using either method | or Il are the

We have analyzed both normal and inverse structure funcsame. There is a slight influence of the chosen method on the
tions of wind-tunnel turbulence where in a single experimenscaling of the negative moments, but it does not affect our
tal facility a rather large range of Reynolds numbére conclusions.
=400-1100 was covered. The streamwise velocity compo-
nent was acquired in a turbulent wake from a multiscale grid,
which has been described [i]. This grid is located in the
NTNU [7] recirculating wind tunnel, which has a test section  Typical inverse structure functions fa=1,2 areshown
of 2.7X 1.8 n? cross section and length 11 m. The signalsin Fig. 1(b). In order to facilitate the comparison to the more
are measured 40 mesh lengths downstream of the grid usifgmiliar ordinary structure functions which are shown in Fig.
the constant-temperature anemometry hot-wire technique. Afi(a), we plot the dependent variable’)*’? on the horizontal
this location(u?)!2/U=0.16 and isR, independent. At each axis and the independent variahtel on the vertical axis.
Reynolds number, longf X 10* integral timeg time series of ~ While the ordinary structure functions of Fig(al exhibit
two velocity components at a single point were registered. Inunambiguous algebraic behavior, no such scaling can be ob-
order to control the noise, which is a crucial point in inverseserved for the inverse structure functions and it is not pos-
structure functions, the signals were always filtered at thgible to assign a scaling exponedip) [9].
Kolmogorov frequencyfy, fx=U/(2m7), where 5 is the The absence of scaling agrees wis, but disagrees with
Kolmogorov length scale ant is the mean velocity, and the inverse structure functions that were computed from a
sampled af;, with fs>2f,. Throughout, we translate timés one-dimensional turbulent field generated by a shell model
into separations using Taylor’s frozen turbulence hypoth- [1]. A first remarkable result is that the inverse structure
esis,x=Ut, whereU is the mean velocity. functions showrelative scaling. This is demonstrated in Fig.

Characterizing a signal through the statistics of exit2 where we plotrP)*? as a function ofr) for p=2,3,..,8.
lengths is similar tobut not the same asharacterizing a From these plots it is possible to determimdative scaling
signal through its zero crossings. In this case it is kng8Jn exponent§9(p) as
that noise contamination has a large effect. We expect, there-
fore, that noise is also important for exit lengths, for ex-
ample, the signal may accidentally exit from a given intervalin the case that alsérP)~ (Au)?P, these relative scaling
Fhrough noise fluctuations which then cut a long exit Iengthexponents will be related to the true ones 326p)
into shorter pieces. _

From the regi i ~di i i 7 0P)/ (L)

gistered signals of a one-dimensional signal of T~ )

a single velocity component, inverse structure functions were BY settingd(p=1) to the valuef(p=1) which was found
computed using two algorithms. In the first algoritifihwe ~ in [1], we may compare our exponents with those[bf
fix the size Au of the velocity interval and start from the There is a striking agreement between thelative) experi-
velocity u, at positionx;, which determines the intervi, mental exponents and the ones obtaingd from the model sig-
—-Au/2,u;+Au/2]. We then register the positiop when the nal. From Fig. 2b) it appears that botl#(p) and é(p) are
velocity signal first exits this interval. This defines the exitlinear functions of the ordep. Therefore, inverse structure
lengthr,;=x,—X;. At positionx, we repeat the procedure, and functions are not sensitive to intermittency. Intermittency
so on. The statistics of the collected exit lengths i breaks the self-similarity of the moments, which is reflected
=1,..., aramproved by restarting at several initial positions in a nonlineardependence of the ordinary structure function
X;. Next, the procedure is repeated at another valu&uwof exponents(p) on the orderp.

Il. EXPERIMENTS

IIl. INVERSE STRUCTURE FUNCTIONS

(rPYLP = (ryo0)lp.
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FIG. 1. () Full lines: ordinary third-order structure functions for
a range of Reynolds numbers Re400—1100 demonstrating the ~ FIG. 2. (a) Inverse structure functions with moments
scaling behavior of the data. Dashed line: the exact relatiorr2.3..-.,8plotted as a function of momem=1 for a Reynolds
((Au/ug)®=-415r/ ), whereuy is the Kolmogorov velocity(p) ~ Number Rg=1120.(b) Open circles, scaling exponentp) from
Full lines: inverse structure functions for the highest Reynolds numinverse structure_functions of shell model détd; closed dots,
ber Rg=1120. In order to facilitate the comparison with), the relative exponentsd(p) of inverse structure functions from experi-
dependent variablgP)P/ 5 for p=1 and 2 has been plotted on the Ments at Re=1121 and 508. They have been normalizedi)
horizontal axis, and the independent variable/u on the vertical ~ =2.04. Dashed lined(p) =2.04p.
axis. Dashed line: scaling behavior found[i, (r) = Au?%

The verification of the inversion formula E) is a prob-
lem as it involves negative moments. For small velocity in-
crements, the probability density functidRDPF of Au is
nearly Gaussian: nothing special happenfdat0. There-
fore, negative moments with<-1 do not exist for the or-
dinary structure functions in our experiment. However, van-
ishing velocity increments have vanishing exit distances
and negative moments may be computed from the probabil-
ity density functions of exit distances. This property of the
PDF's of exit distances was already demonstrated by Jensen
[1] for turbulence generated by the GOY shell model, and it
is again demonstrated for our experiment in Fig. 3 Aar 0 2000 4000 6001
ranging from dissipative to inertial range values. rim

It can be concluded from F'g'_ 3 that fqr increments . FIG. 3. Probability density functions of exit distancels; for
larger than the Kolmogorov velocity, negative moments with,g|ocity increments\u/u,=0.85, 11 and 50, for curves 1, 2, and 3,
p=-2 exist. This contrasts with the case of the velocity espectively. Inverse structure functions are moments of these
increments at a fixed separation which correspond to the oppF's. Inset: probability density function of velocity increments
dinary structure function. As Fig. 3 also illustrates, the PDFat a fixed separatior/ »=110. This PDF corresponds to the normal
of Au is flat nearAu=0, and, consequently, negative mo- structure function. While the PDF’s of exit distances support nega-
ments with p<-1 do not exist[10]. Therefore, we will tive moments, no negative orders with< -1 exist of the ordinary
check the inversion formula E) in the form structure function.

036303-3



B. R. PEARSON AND W. van de WATER PHYSICAL REVIEW FE1, 036303(2009

040~

<rP >t g

Lp)/p
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flow with Rg, =8X 10%. The actually measuref{3)=1.06, but the L "
exponents were normalized such th#@B)=1. Dashed line: log-
Poisson mod€l12]. Dash-dotted line: Kolmogorov self-similar pre-
diction ¢(p)=p/3.
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where{ "Y(p) is the inverse of the exponent functigtp) of e En—
the ordinary structure function. Because the functié( P

and £(p) both trivially become 0 ap=0, and we compute
negative order®(p) for small p, we have divided both left-
and right-hand sides of E¢3) by p. We will argue below
that for smallp, (p)/p and, similarly, the ratiol ~X(p)/p
contain relevant information about turbulent velocity fluctua-
tions. If the inversion formula E(5) holds, the exact result
for {(3) fixes 6(-1)=3.

For a turbulent flow at Re=800 that was stirred using a
similar grid as in the experiments reported in this paper, Fig,
4 shows the scaling exponent&)/p. As was already em-
phasized if11], it is clear that intermittency not only shows
in the high-order moments, but also in the low-order ones.
Since the sign ofAu has no special meaning in inverse struc-
ture functions, at least not in the current definition, we com-
puted the ordinary structure functions using absolute valu€®
incrementgAu|, which enables us to measure structure funcd
tions of noninteger ordgn< 1, even those gi=0 (which is
lim,_o{|AulPYP=exp(In|Aul)). Figure 4 also shows that the

FIG. 5. (a) Inverse structure functions for ordeps=—2,-1.5,
-1,-0.5,-0.1,0.1,0.5 for a turbulent velocity signal at R&100.
(b) Dashed line, € Xp)/p computed from the log-Poisson model
[22]; full line, relative exponen@(—p)/p from the inverse structure
functions in(a). If the inversion formula Eq(3) were to work for
turbulence experiments, the dashed and full curves would have
collapsed.

inversion formula Eq(2) that links the inverse to the ordi-
nary structure function cannot hold for experimental turbu-
lence.

Surprisingly, the inversion formula in the form of E@)
was successfully checked for very largep to order —12

and Roux[4]. It is clear from the arguments presented here
that this cannot be done for experimental turbulence. More-
over, in the form where all moments exist, the inversion fails.
log-Poisson model df12] gives an excellent parametrization Therefore, the significance of the inverse structure functions
of the experiments. Instead of the actually measured data, w and its relation to the ordinary structure function of experi-
WHental turbulence signals remain unsettled.

will therefore use this model to determine the inverse func-
tion £ ~X(p).

From measured PDF’s of exit distances we c_o_mputed a IV. INTERMEDIATE DISSIPATIVE RANGE
few low-order negative moments. As for the positive ones,
also the inverse structure functions at negative orders lack Let us now turn to the overall shape of the inverse struc-
scaling behavior, and we plot in Fig(d the inverse struc- ture functions. Ordinary structure functions display algebraic
ture functions in a relative way. Also the negative order in-behavior with scaling exponent$p) that depend omp in a
verse structure functions display self-similar behavior anchonlinear fashion. The power and beauty of the multifractal
6(—p)/p, shown in Fig. Bb), is almost constant and equal to model [2] is its explanation of this behavior in terms of a
the (seb reference value gv=1, 6(—1)=3. On the contrary, distribution f(a) of local singularitiesa such that locally
the inverse moments of the ordinary structure functionvelocity increments scale asu(r)~ (r/L)¢ where we have
- "Y(p)/p strongly depend on the ordpr which reflects the also introduced the integral scdle The distribution of sin-
intermittency of the turbulent velocity signal. The trend of gularities defines the structure functidgy(r)=([Au(r)]")
the two curves is actually opposite and demonstrates that thterough the integral
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p ¥max

w Nf (r/L)3‘f<“)+p“da, (6)
Uk Xmin

which is done over the local scaling exponentsFor r/L
<1, that is, inertial range scales, the integrand is sharply
peaked at the value” where the exponent 3fta)+pa is
minimal. If o" is contained in the intervalamn, ¥mad, the
integral is determined by the value of the exponent in the
point @=«’, and does not depend on its bounds. As a conse-
quence, the structure function is algebraic with scaling expo-
nent set by (p)=3-f(a’)+pa’, with corrections logarithmic
inr/L.

The integration over runs from the strongesioy,,) to

Au/uK
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the weakes{a,,,,) singularity strength of the turbulent ve-
locity field. In fact, the weakest singularity that can be seen
is set by the viscosity and/L. It is reached when the eddy
turnover time equals the viscous dissipation time,

_1+4In(r/n)/inRe
“max= 3 41n(r/p)lin Re’

For small enough, a,,, may become smaller tha@ and
the integral Eq.(6) is determined explicitly bywn,,. Since
amax depends logarithmically on, the structure function is
no longer algebraic and thus lacks scaling behavior. As the BT 2
argument r now always appears in the combination <rP | P >lplogio (Re)
In(r/7)/InRe, the structure functions at different Reynolds
numbers must no longer be plotted|[2$

)

(Aut uK) Iilog g (Re)

10%

FIG. 6. Inverse structure functions of order1 and Reynolds
numbers Rg=425,508,673,829,862,969,1008,1038,1096,1121,

In(Gp/uE) versus Ir/7), (8) respectively(a) Plotted in the standard way, E(). (b) Using the
intemediate dissipative range scaling scaling E®). [which is
but as (r/p)YRe. (Au/u)¥Re on a logarithmic axis The scaling was
In(G fuﬁ) In(r/ ) done relative to the curve at Rel121.

I versus I 9

nRe nRe shown in Figs. 6) and @b), respectively. In both cases the
The scaling Eq(9) of structure functions thus is character- curves collapse, but the collapse is better for the ordinary
istic for the intermediate dissipative range of separations scaling Eq.(8).
Such scaling has been observed in spectra of temperature We conclude that the experiment favors the ordinary scal-
fluctuations in strongly turbulent thermal convectifit8].  ing of the inverse structure function, indicating that the in-
Since the inverse structure functions are thought to probe theerse structure function is not especially sensitive to the in-
smooth episodes of the velocity field, it has been proposetermediate dissipative range. However, we realize that the
[3] that they should scale with Reynolds number in the waydifference between the two scalings E®.and(9) is small.
described by Eq(9). Our conclusion is at variance with that [&], but they have

The problem with an experimental check of F9).is that  analyzed the effect of varying low-pass filtering on only a
it depends on théogarithm of the Reynolds number and a single experimental time series, which cannot substitute for
large range of Reynolds numbers is needed to distinguish genuine variation of the Reynolds number.
from the more mundane scaling E§). Our Reynolds num- In testing Eq.(9) it must be realized that purely algebraic
bers range from Re=400 to 1100, but In1100/In400 is a inverse structure functions that pass through the fixed point
mere 1.17. Therefore, the normalization H§) stretches (r/#,Au/ug)=(1,1) are up to a stretch factor invariant under
both horizontal and vertical axes only by a factor 1.17, forthe scaling of Eq(9). Therefore, the interval in/ % where
the inverse structure function at Re1100, compared to the the scaling Eq(9) holds can be selected by an appropriate
one at Rg=400; this is a small effect. However, it is impor- change of units. The inverse structure functions of Fig. 6 can
tant to realize that all our data were acquired in the samd&e roughly approximated by algebraic behaviors at both
experimental facility, with all the signals filtered exactly at small and large. It appears that the largealgebraic behav-
the Kolmogorov frequency; for these data the only varyingior approximately passes through this fixed point. As the in-
parameter is the Reynolds number. verse structure functions already collapse at large Fig.

The question now is whether we can distinguish in the6(a), they will remain doing so in Fig.(®). This allows us to
experiment the ordinary scaling E@®) from the scaling with  focus on the smalt behavior(the intermediate dissipative
the logarithm of the Reynolds number E®). For inverse range where the collapse of the curves is poorest with the
structure functions of ordgp=1 these distinct scalings are scaling Eq.(9).
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V. CONCLUSION that inverse structure functions are sensitive to the interme-
diate dissipative rang€3]. Although the inverse structure
The fractal character of strong turbulence is reflected irfunction captures little of truly structural aspects of turbu-
intermittency: the tendency of turbulence to fill space un-lence, it is an interesting quantity and further work is clearly
evenly with local singularities. Intermittency is missed by needed to understand it.
inverse structure functions which hauelative) scaling ex- The statistics of signals of a single velocity component in
ponents that depend linearly on the order. It is therefore noj point of the turbulent field keeps posing intriguing ques-
surprising that we fail to verify the inversion formula E@)  tions. However, we must also realize that this is only a small
relating these exponents to the ones from the ordinary strugart of the full story. The turbulent velocity field has three
ture functions whichdo reflect intermittency and, instead, components and evolves in space and time. Some of this rich
depend nonlinearly on the order. structural information was already ignored in this paper
The scaling exponents ¢felative) inverse structure func-  when we defined moments in terms of the absolute value of
tions appear to be well defined and agree with the ones olhe velocity incrementg|Au(r)|P), which ignores the essen-
tained from a turbulent velocity_time series tha_t was geneftjg| connection fop=3 between the skewness of the velocity
ated by a shell moddll]. The wide open question is what jhcrements and the cascade of energy toward small scales.
these exponents mean. Clearly, inverse structure funct|or@n|y recently was an attempt made to include structural in-

capture something from a turbulence signal that cannot bg)mation in the definition of scaling exponeritisA].
obtained from the ordinary structure functions, but we do not

know what it is.
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