
Inverse structure functions

Bruce R. Pearson1,2 and Willem van de Water1

1Physics Department, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands
2School of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom

sReceived 20 August 2004; published 15 March 2005d

While the ordinary structure function in turbulence is concerned with the statistical moments of the velocity
incrementDu measured over a distancer, the inverse structure function is related to the distancer where the
turbulent velocity exits the intervalDu. We study inverse structure functions of wind-tunnel turbulence which
covers a range of Reynolds numbers Rel=400–1100. We test a recently proposed relation between the scaling
exponents of the ordinary structure functions and those of the inverse structure functionsfS. Roux and M. H.
Jensen, Phys. Rev. E69, 16309s2004dg. The relatively large range of Reynolds numbers in our experiment
also enables us to address the scaling with Reynolds number that is expected to highlight the intermediate
dissipative range. While we firmly establish thesrelatived scaling of inverse structure functions, our experi-
mental results fail both predictions. Therefore, the question of the significance of inverse structure functions
remains open.
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I. INTRODUCTION

The discovery that turbulent velocity signals possess a
highly nontrivial scaling structure has been an important
stimulus to turbulence research. In the well-known Kolmog-
orov framework, turbulence is viewed as strictly self-similar
with a single scaling exponent which is reflected in thek−5/3

behavior of the energy spectrumEskd f2g. It has now become
clear that the statistical properties of turbulent fluctuations
are much richer. More precisely, statistical moments of the
velocity incrementsDusrd=usx+rd−usxd measured over a
distancer exhibit algebraic behaviorkfDusrdgpl, rzspd with
scaling exponentszspd that depend in a nonlinear fashion on
the momentp f2g, and that are most probably universal, i.e.,
they do not depend on the detailed realization of the turbu-
lent flow.

Although the scaling properties of theu component of the
velocity difference measured in the samesxd direction offer a
quite restricted view of turbulence, it is an interesting ques-
tion whether we can turn the scaling argument around. That
is, how long does it take on average for the velocityu to exit
a given velocity intervalfusxd−Du/2 ,usxd+Du/2g with size
Du? The exit atx+r then defines theexit distance r.

The question then is whether moments of the fluctuating
exit distancesr depend algebraically on the size of the ve-
locity interval

krpl , Duuspd, s1d

and, if so, what the relation is between the exponentsuspd of
the inverse structure function and the exponentszspd of the
ordinary structure function.

The inverse structure functions were first proposed by
Jensenf1g who found algebraic behavior of the momentskrpl
for a turbulent velocity field that was generated by a shell
model. No such algebraic behavior was found inf3g, where
inverse structure functions were computed from an experi-
mental turbulent velocity signal that was obtained at a Rey-
nolds number Rel<2000. This absence of scaling was ex-

plained in f3g by arguing that the moments of the exit
distancesr probe the episodes in the turbulent flow where
viscosity starts to reignsthe so-called intermediate dissipa-
tive ranged. As inverse structure functions encompass the
crossover of the inertial range to the dissipative range, no
algebraic behavior is expected. Instead, as will be explained
below, the inverse structure functions are expected to scale
with Reynolds number in a special manner. Such scaling was
indeed observed inf3g. As f3g had only experimental data at
a single Reynolds number, lower-Reynolds-number data
were mimicked by filtering the signal at decreasing low-pass
frequencies. Because this is not the proper way to alter the
Reynolds number, an experimental check of the proposed
Reynolds number scaling is still needed.

Recently Jensen and Rouxf4g have proposed an exact
relation between the ordinary and inverse scaling exponents.
The relation, which was proved to hold for binomial mea-
sures, reads

− u„− zspd… = p. s2d

This relation was checked inf4g for a turbulent signal that
was obtained by integrating the Gledzer-Ohkitani-Yamada
sGOYd shell modelf5g; in this case it was shown to hold
remarkably well. The problem is that a check of Eq.s2d
necessitates the computation of negative moments of either
the exit distancesr for the inverse structure functions or the
velocity incrementsDu for the normal structure functions.

To make this explicit, we write Eq.s2d in the form

− zs− pd = u−1spd. s3d

Clearly, the inverse scaling functionsu−1spd for positive mo-
mentsp must now be compared to negative moments of the
ordinary structure functions. Jensen and Rouxf4g showed
that this could actually be done for turbulence generated by
the GOY model. The found agreement with Eq.s3d is re-
markable because it is well known that for actual turbulence
velocity increments, be they from experiments or from direct
numerical simulations, negative momentskDupl with

PHYSICAL REVIEW E 71, 036303s2005d

1539-3755/2005/71s3d/036303s6d/$23.00 ©2005 The American Physical Society036303-1



pø−1 do not exist. This follows from the observation that
there is nothing special about the velocity increment 0, and
the probability density function ofDu is a constant near
Du=0.

The purpose of the present paper is to check Eq.s2d, but
not through negative moments of the exit distancesr. We
will demonstrate that, contrary to the velocity increments,
the probability density function of the exit distances vanishes
at r =0, so that negative moments make sense. A second pur-
pose of this paper is a check of the Reynolds number scaling
of inverse structure functions that was proposed inf3g. The
key idea is that inverse structure functions probe the dissipa-
tive large wave number end of the energy cascade. Unlike
the ordinary structure functions, which can be scaled with
the Kolmogorov length and velocity, the scaling of the in-
verse structure functions should now involve the Reynolds
number explicitly.

II. EXPERIMENTS

We have analyzed both normal and inverse structure func-
tions of wind-tunnel turbulence where in a single experimen-
tal facility a rather large range of Reynolds numberssRel

=400–1100d was covered. The streamwise velocity compo-
nent was acquired in a turbulent wake from a multiscale grid,
which has been described inf6g. This grid is located in the
NTNU f7g recirculating wind tunnel, which has a test section
of 2.731.8 m2 cross section and length 11 m. The signals
are measured 40 mesh lengths downstream of the grid using
the constant-temperature anemometry hot-wire technique. At
this locationku2l1/2/U=0.16 and isRl independent. At each
Reynolds number, longs63104 integral timesd time series of
two velocity components at a single point were registered. In
order to control the noise, which is a crucial point in inverse
structure functions, the signals were always filtered at the
Kolmogorov frequencyfK, fK=U / s2phd, where h is the
Kolmogorov length scale andU is the mean velocity, and
sampled atfs, with fs.2fK. Throughout, we translate timest
into separationsx using Taylor’s frozen turbulence hypoth-
esis,x=Ut, whereU is the mean velocity.

Characterizing a signal through the statistics of exit
lengths is similar tosbut not the same asd characterizing a
signal through its zero crossings. In this case it is knownf8g
that noise contamination has a large effect. We expect, there-
fore, that noise is also important for exit lengths, for ex-
ample, the signal may accidentally exit from a given interval
through noise fluctuations which then cut a long exit length
into shorter pieces.

From the registered signals of a one-dimensional signal of
a single velocity component, inverse structure functions were
computed using two algorithms. In the first algorithmsId we
fix the sizeDu of the velocity interval and start from the
velocity u1 at positionx1, which determines the intervalfu1

−Du/2 ,u1+Du/2g. We then register the positionx2 when the
velocity signal first exits this interval. This defines the exit
lengthr1=x2−x1. At positionx2 we repeat the procedure, and
so on. The statistics of the collected exit lengthsr i, i
=1, . . . , areimproved by restarting at several initial positions
x1. Next, the procedure is repeated at another value ofDu.

In algorithm II we start the quest for exit lengths at all
considered values ofDu at the same positionx and stop once
the velocity signal exits at the givenDu. Also here the sta-
tistics is improved by randomly picking starting positionsx.
The difference between both algorithms is that in case I the
exit position x2 defines the start of the new intervalfu2

−Du/2 ,u2+Du/2g, contrary to case II where all intervals at a
given Du start at random positions.

In both cases we collect histograms of exit lengthsr i,
i =1,2, . . ., ateachDu. From these histograms we form the
probability density functionsPDusrd from which the mo-
ments are computed,

krpl =E
0

`

rpPDusrddrYE
0

`

PDusrddr. s4d

Although it may be contended that algorithm I is biased to-
ward the short exit lengths, both algorithms give, up to a
prefactor ofkrpl, the same results; that is, the scaling prop-
erties of rp computed using either method I or II are the
same. There is a slight influence of the chosen method on the
scaling of the negative moments, but it does not affect our
conclusions.

III. INVERSE STRUCTURE FUNCTIONS

Typical inverse structure functions forp=1,2 areshown
in Fig. 1sbd. In order to facilitate the comparison to the more
familiar ordinary structure functions which are shown in Fig.
1sad, we plot the dependent variablekrpl1/p on the horizontal
axis and the independent variableDu on the vertical axis.
While the ordinary structure functions of Fig. 1sad exhibit
unambiguous algebraic behavior, no such scaling can be ob-
served for the inverse structure functions and it is not pos-
sible to assign a scaling exponentuspd f9g.

The absence of scaling agrees withf3g, but disagrees with
the inverse structure functions that were computed from a
one-dimensional turbulent field generated by a shell model
f1g. A first remarkable result is that the inverse structure
functions showrelative scaling. This is demonstrated in Fig.
2 where we plotkrpl1/p as a function ofkrl for p=2,3,…,8.
From these plots it is possible to determinerelative scaling

exponentsũspd as

krpl1/p = krlũspd/p.
In the case that alsokrpl,sDuduspd, these relative scaling

exponents will be related to the true ones asũspd
=uspd /us1d

By settingũsp=1d to the valueusp=1d which was found
in f1g, we may compare our exponents with those off1g.
There is a striking agreement between thesrelatived experi-
mental exponents and the ones obtained from the model sig-

nal. From Fig. 2sbd it appears that bothũspd and uspd are
linear functions of the orderp. Therefore, inverse structure
functions are not sensitive to intermittency. Intermittency
breaks the self-similarity of the moments, which is reflected
in a nonlineardependence of the ordinary structure function
exponentszspd on the orderp.
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The verification of the inversion formula Eq.s2d is a prob-
lem as it involves negative moments. For small velocity in-
crements, the probability density functionsPDFd of Du is
nearly Gaussian: nothing special happens atDu=0. There-
fore, negative moments withpø−1 do not exist for the or-
dinary structure functions in our experiment. However, van-
ishing velocity increments have vanishing exit distancesr,
and negative moments may be computed from the probabil-
ity density functions of exit distances. This property of the
PDF’s of exit distances was already demonstrated by Jensen
f1g for turbulence generated by the GOY shell model, and it
is again demonstrated for our experiment in Fig. 3 forDu
ranging from dissipative to inertial range values.

It can be concluded from Fig. 3 that for incrementsDu
larger than the Kolmogorov velocity, negative moments with
p*−2 exist. This contrasts with the case of the velocity
increments at a fixed separation which correspond to the or-
dinary structure function. As Fig. 3 also illustrates, the PDF
of Du is flat nearDu=0, and, consequently, negative mo-
ments with pø−1 do not existf10g. Therefore, we will
check the inversion formula Eq.s2d in the form

FIG. 1. sad Full lines: ordinary third-order structure functions for
a range of Reynolds numbers Rel=400–1100 demonstrating the
scaling behavior of the data. Dashed line: the exact relation
ksDu/uKd3l=−4/5sr /hd, whereuK is the Kolmogorov velocity.sbd
Full lines: inverse structure functions for the highest Reynolds num-
ber Rel=1120. In order to facilitate the comparison withsad, the
dependent variablekrpl1/p/h for p=1 and 2 has been plotted on the
horizontal axis, and the independent variableDu/uK on the vertical
axis. Dashed line: scaling behavior found inf1g, krl.Du2.04

FIG. 2. sad Inverse structure functions with momentsp
=2,3, . . . ,8plotted as a function of momentp=1 for a Reynolds
number Rel=1120.sbd Open circles, scaling exponentsuspd from
inverse structure functions of shell model dataf1g; closed dots,
relative exponentsũspd of inverse structure functions from experi-
ments at Rel=1121 and 508. They have been normalized tous1d
=2.04. Dashed line:ũspd=2.04p.

FIG. 3. Probability density functions of exit distancesr /h for
velocity incrementsDu/uK=0.85, 11 and 50, for curves 1, 2, and 3,
respectively. Inverse structure functions are moments of these
PDF’s. Inset: probability density function of velocity incrementsDu
at a fixed separationr /h=110. This PDF corresponds to the normal
structure function. While the PDF’s of exit distances support nega-
tive moments, no negative orders withp,−1 exist of the ordinary
structure function.
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us− pd
p

= −
z −1spd

p
, p . 0, s5d

wherez −1spd is the inverse of the exponent functionzspd of
the ordinary structure function. Because the functionsuspd
and zspd both trivially become 0 atp=0, and we compute
negative ordersuspd for small p, we have divided both left-
and right-hand sides of Eq.s3d by p. We will argue below
that for smallp, zspd /p and, similarly, the ratioz −1spd /p
contain relevant information about turbulent velocity fluctua-
tions. If the inversion formula Eq.s5d holds, the exact result
for zs3d fixes us−1d=3.

For a turbulent flow at Rel=800 that was stirred using a
similar grid as in the experiments reported in this paper, Fig.
4 shows the scaling exponentszspd /p. As was already em-
phasized inf11g, it is clear that intermittency not only shows
in the high-order moments, but also in the low-order ones.
Since the sign ofDu has no special meaning in inverse struc-
ture functions, at least not in the current definition, we com-
puted the ordinary structure functions using absolute value
incrementsuDuu, which enables us to measure structure func-
tions of noninteger orderp,1, even those atp=0 swhich is
limp→0kuDuupl1/p=expklnuDuuld. Figure 4 also shows that the
log-Poisson model off12g gives an excellent parametrization
of the experiments. Instead of the actually measured data, we
will therefore use this model to determine the inverse func-
tion z −1spd.

From measured PDF’s of exit distances we computed a
few low-order negative moments. As for the positive ones,
also the inverse structure functions at negative orders lack
scaling behavior, and we plot in Fig. 5sad the inverse struc-
ture functions in a relative way. Also the negative order in-
verse structure functions display self-similar behavior and
us−pd /p, shown in Fig. 5sbd, is almost constant and equal to
the ssetd reference value atp=1, us−1d=3. On the contrary,
the inverse moments of the ordinary structure function
−z −1spd /p strongly depend on the orderp, which reflects the
intermittency of the turbulent velocity signal. The trend of
the two curves is actually opposite and demonstrates that the

inversion formula Eq.s2d that links the inverse to the ordi-
nary structure function cannot hold for experimental turbu-
lence.

Surprisingly, the inversion formula in the form of Eq.s3d
was successfully checked for very largesup to order −12d
negative orders of the ordinary structure function by Jensen
and Rouxf4g. It is clear from the arguments presented here
that this cannot be done for experimental turbulence. More-
over, in the form where all moments exist, the inversion fails.
Therefore, the significance of the inverse structure functions
and its relation to the ordinary structure function of experi-
mental turbulence signals remain unsettled.

IV. INTERMEDIATE DISSIPATIVE RANGE

Let us now turn to the overall shape of the inverse struc-
ture functions. Ordinary structure functions display algebraic
behavior with scaling exponentszspd that depend onp in a
nonlinear fashion. The power and beauty of the multifractal
model f2g is its explanation of this behavior in terms of a
distribution fsad of local singularitiesa such that locally
velocity increments scale asDusrd,sr /Lda, where we have
also introduced the integral scaleL. The distribution of sin-
gularities defines the structure functionGpsrd=kfDusrdgpl
through the integral

FIG. 4. Dots: scaling exponentszspd /p measured in a turbulent
flow with Rel=83102. The actually measuredzs3d=1.06, but the
exponents were normalized such thatzs3d=1. Dashed line: log-
Poisson modelf12g. Dash-dotted line: Kolmogorov self-similar pre-
diction zspd=p/3.

FIG. 5. sad Inverse structure functions for ordersp=−2,−1.5,
−1,−0.5,−0.1,0.1,0.5 for a turbulent velocity signal at Rel=1100.
sbd Dashed line, −z −1spd /p computed from the log-Poisson model

f12g; full line, relative exponentsũs−pd /p from the inverse structure
functions insad. If the inversion formula Eq.s3d were to work for
turbulence experiments, the dashed and full curves would have
collapsed.
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kfDusrdgpl
uK

p , E
amin

amax

sr/Ld3−fsad+pada, s6d

which is done over the local scaling exponentsa. For r /L
!1, that is, inertial range scales, the integrand is sharply
peaked at the valuea* where the exponent 3−fsad+pa is
minimal. If a* is contained in the intervalfamin,amaxg, the
integral is determined by the value of the exponent in the
point a=a* , and does not depend on its bounds. As a conse-
quence, the structure function is algebraic with scaling expo-
nent set byzspd=3−fsa*d+pa* , with corrections logarithmic
in r /L.

The integration overa runs from the strongestsamind to
the weakestsamaxd singularity strength of the turbulent ve-
locity field. In fact, the weakest singularity that can be seen
is set by the viscosity andr /L. It is reached when the eddy
turnover time equals the viscous dissipation time,

amax=
1 + 4 lnsr/hd/ln Re

3 − 4 lnsr/hd/ln Re
. s7d

For small enoughr, amax may become smaller thana* and
the integral Eq.s6d is determined explicitly byamax. Since
amax depends logarithmically onr, the structure function is
no longer algebraic and thus lacks scaling behavior. As the
argument r now always appears in the combination
lnsr /hd / lnRe, the structure functions at different Reynolds
numbers must no longer be plotted asf2g

lnsGp/uK
pd versus lnsr/hd, s8d

but as

lnsGp/uK
pd

ln Re
versus

lnsr/hd
ln Re

. s9d

The scaling Eq.s9d of structure functions thus is character-
istic for the intermediate dissipative range of separationsr.
Such scaling has been observed in spectra of temperature
fluctuations in strongly turbulent thermal convectionf13g.
Since the inverse structure functions are thought to probe the
smooth episodes of the velocity field, it has been proposed
f3g that they should scale with Reynolds number in the way
described by Eq.s9d.

The problem with an experimental check of Eq.s9d is that
it depends on thelogarithm of the Reynolds number and a
large range of Reynolds numbers is needed to distinguish it
from the more mundane scaling Eq.s8d. Our Reynolds num-
bers range from Rel=400 to 1100, but ln1100/ ln400 is a
mere 1.17. Therefore, the normalization Eq.s9d stretches
both horizontal and vertical axes only by a factor 1.17, for
the inverse structure function at Rel=1100, compared to the
one at Rel=400; this is a small effect. However, it is impor-
tant to realize that all our data were acquired in the same
experimental facility, with all the signals filtered exactly at
the Kolmogorov frequency; for these data the only varying
parameter is the Reynolds number.

The question now is whether we can distinguish in the
experiment the ordinary scaling Eq.s8d from the scaling with
the logarithm of the Reynolds number Eq.s9d. For inverse
structure functions of orderp=1 these distinct scalings are

shown in Figs. 6sad and 6sbd, respectively. In both cases the
curves collapse, but the collapse is better for the ordinary
scaling Eq.s8d.

We conclude that the experiment favors the ordinary scal-
ing of the inverse structure function, indicating that the in-
verse structure function is not especially sensitive to the in-
termediate dissipative range. However, we realize that the
difference between the two scalings Eqs.s8d ands9d is small.
Our conclusion is at variance with that off3g, but they have
analyzed the effect of varying low-pass filtering on only a
single experimental time series, which cannot substitute for
genuine variation of the Reynolds number.

In testing Eq.s9d it must be realized that purely algebraic
inverse structure functions that pass through the fixed point
sr /h ,Du/uKd=s1,1d are up to a stretch factor invariant under
the scaling of Eq.s9d. Therefore, the interval inr /h where
the scaling Eq.s9d holds can be selected by an appropriate
change of units. The inverse structure functions of Fig. 6 can
be roughly approximated by algebraic behaviors at both
small and larger. It appears that the larger algebraic behav-
ior approximately passes through this fixed point. As the in-
verse structure functions already collapse at larger in Fig.
6sad, they will remain doing so in Fig. 6sbd. This allows us to
focus on the smallr behaviorsthe intermediate dissipative
ranged where the collapse of the curves is poorest with the
scaling Eq.s9d.

FIG. 6. Inverse structure functions of orderp=1 and Reynolds
numbers Rel=425,508,673,829,862,969,1008,1038,1096,1121,
respectively.sad Plotted in the standard way, Eq.s8d. sbd Using the
intemediate dissipative range scaling scaling Eq.s9d fwhich is
sr /hd1/Rel, sDu/uKd1/Rel on a logarithmic axisd. The scaling was
done relative to the curve at Rel=1121.
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V. CONCLUSION

The fractal character of strong turbulence is reflected in
intermittency: the tendency of turbulence to fill space un-
evenly with local singularities. Intermittency is missed by
inverse structure functions which havesrelatived scaling ex-
ponents that depend linearly on the order. It is therefore not
surprising that we fail to verify the inversion formula Eq.s2d
relating these exponents to the ones from the ordinary struc-
ture functions whichdo reflect intermittency and, instead,
depend nonlinearly on the order.

The scaling exponents ofsrelatived inverse structure func-
tions appear to be well defined and agree with the ones ob-
tained from a turbulent velocity time series that was gener-
ated by a shell modelf1g. The wide open question is what
these exponents mean. Clearly, inverse structure functions
capture something from a turbulence signal that cannot be
obtained from the ordinary structure functions, but we do not
know what it is.

We find a clear distinction between the statistics of veloc-
ity signals in the experiment and the velocities in the GOY
shell modelf1,4g. For the latter, inverse structure functions
scale with scaling exponents that can be inverted. Perhaps
this is because the experiment is a one-dimensional cut
through one component of the velocity field, while for the
shell model the computed field is all there is.

By performing experiments at a relatively large range of
Reynolds numbers, we have also refuted a recent suggestion

that inverse structure functions are sensitive to the interme-
diate dissipative rangef3g. Although the inverse structure
function captures little of truly structural aspects of turbu-
lence, it is an interesting quantity and further work is clearly
needed to understand it.

The statistics of signals of a single velocity component in
a point of the turbulent field keeps posing intriguing ques-
tions. However, we must also realize that this is only a small
part of the full story. The turbulent velocity field has three
components and evolves in space and time. Some of this rich
structural information was already ignored in this paper
when we defined moments in terms of the absolute value of
the velocity increments,kuDusrdupl, which ignores the essen-
tial connection forp=3 between the skewness of the velocity
increments and the cascade of energy toward small scales.
Only recently was an attempt made to include structural in-
formation in the definition of scaling exponentsf14g.
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